首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23136篇
  免费   3521篇
  国内免费   2657篇
化学   17264篇
晶体学   304篇
力学   1278篇
综合类   202篇
数学   2483篇
物理学   7783篇
  2023年   392篇
  2022年   417篇
  2021年   676篇
  2020年   865篇
  2019年   834篇
  2018年   674篇
  2017年   644篇
  2016年   1048篇
  2015年   1008篇
  2014年   1250篇
  2013年   1683篇
  2012年   2085篇
  2011年   2182篇
  2010年   1524篇
  2009年   1329篇
  2008年   1556篇
  2007年   1333篇
  2006年   1311篇
  2005年   1178篇
  2004年   919篇
  2003年   779篇
  2002年   742篇
  2001年   578篇
  2000年   512篇
  1999年   470篇
  1998年   367篇
  1997年   332篇
  1996年   358篇
  1995年   330篇
  1994年   255篇
  1993年   234篇
  1992年   226篇
  1991年   192篇
  1990年   194篇
  1989年   151篇
  1988年   120篇
  1987年   85篇
  1986年   84篇
  1985年   81篇
  1984年   49篇
  1983年   44篇
  1982年   35篇
  1981年   29篇
  1980年   17篇
  1979年   27篇
  1978年   16篇
  1977年   14篇
  1976年   10篇
  1975年   14篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Glechomae Herba (GH) is derived from the dried aerial part of Glechoma longituba (Nakai) Kupr., which is harvested from spring to autumn. It has the effects of clearing heat and detoxification. The aim of this paper was to study the chemical composition and the anti-complement activity of GH collected in different months. Ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry based on predicted compounds screening and diagnostic ion filter strategy was developed for identifying the chemical composition of GH collected in different months. A total of 102 compounds—40 chlorogenic acids (CGAs), 32 phenolic acids, and 30 flavonoids—were reasonably identified in GH. Thirty-four CGAs were discovered in GH for the first time. The correlations between chemical compositions and anti-complement activities of GH collected in different months were analyzed. Phenolic acids and flavonoids were found to be negatively correlated with anti-complement activity, and CGAs were positively correlated with anti-complement activity. At the same time, six CGA standards had obvious anti-complement activity. It was demonstrated that different harvest months had a significant impact on the difference in chemical composition and anti-complement activity of GH. And CGAs might play an important role in the anti-complement activity of GH.  相似文献   
102.
A series of metalized C-PIM-M (M = Na+, Mg2+, Al3+, PIMs = polymers of intrinsic microporosity) materials were prepared from a carboxyl-functionalized PIM (C-PIMs). The C-PIM-Na exhibited a high CO2 adsorption capacity of 2.44 mmol/g and extreme low CH4 uptake of 0.28 mmol/g at 273 K and 101 kPa among three metallated PIMs. It showed remarkably high CO2/CH4 and CO2/N2 selectivities at both 273 and 293 K due to an advantageous pore-blocking effect of Na+ cation.  相似文献   
103.
Efficient exfoliation and downsizing of Sb2S3 and Bi2S3 layered compounds by using scalable bipolar electrochemistry on their suspensions in aqueous media are here demonstrated. The resulting samples were characterized in detail by transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy; their electrochemistry toward hydrogen evolution was also investigated. Hydrogen evolution ability of exfoliated Sb2S3 and Bi2S3 was investigated and compared to the bulk counterparts.  相似文献   
104.
Copper nanoclusters (CuNCs) as a new class of fluorescent materials have attracted a great deal of interest due to their outstanding fluorescence properties. In this work, a variety of organic solvents were used to induce self-assembly of glutathione-capped CuNCs (GSH-CuNCs) to form ordered assemblies with enhanced fluorescence properties. Assemblies with multicolor fluorescence emission were constructed on the basis of the aggregation-induced emission (AIE) of GSH-CuNCs and the solvent effect. The fluorescence emission from these GSH-CuNCs assemblies can also be tuned from yellow to purple by changing the organic solvent. A possible mechanism based on the size of the assemblies and electron transfer was explored to explain the solvent effects on GSH-CuNCs. Stimuli-responsive nanoswitches with excellent reversibility can be controlled by changing the type of organic solvent and the ratio of the organic solvent to the aqueous solution of GSH-CuNCs. As the CuNCs assemblies exhibit strong, stable, and color-tunable fluorescence, they were employed as color-conversion materials for recognizing different organic solvents.  相似文献   
105.
Smart multifunctional molecular ferroelectrics bearing high Curie temperatures and diverse excellent physical properties, such as second harmonic generation (SHG) responses, luminescence, and semiconductivity, among others, have significant applications but have seldom been documented. Herein, the rare-earth metals Nd and Pr are introduced into a simple molecular system (nBu4N )3[M(NO3)x(SCN)y] (nBu4N=tetrabutyl ammonium, M=rare-earth metal, nBu=CH3CH2CH2CH2), and two new multifunctional molecular ferroelectrics are obtained: (nBu4N )3[Nd(NO3)4(SCN)2] ( 1 ) and (nBu4N )3[Pr(NO3)4(SCN)2] ( 2 ). Their distinct heat and dielectric anomaly dependence on temperature verifies that compounds 1 and 2 experience high-temperature para-ferroelectric phase transitions at 408 and 413 K, respectively. Strikingly, both molecular ferroelectrics possess large spontaneous polarization with Ps values of 9.05 and 8.50 μC cm−2, respectively, and are further characterized by the appearance of multiple intersecting non-180° domains and polarization switching behavior. In particular, compounds 1 and 2 show good stability with only a small decrease in SHG intensity after switching cycles, suggesting that they have great potential for application in nonlinear optical (NLO) switches. Simultaneously, the rare-earth compounds 1 and 2 present bright yellow–red and bright green fluorescence, respectively, at room temperature.  相似文献   
106.
It has been established that a newly developed cyclopentadienyl rhodium(III) [CpARhIII] complex, bearing an acidic secondary amide moiety on the Cp ring, is able to catalyze the ortho-bromination of O-phenyl carbamates with N-bromosuccinimide (NBS) at room temperature. The presence of the acidic secondary amide moiety on the CpA ligand accelerates the bromination by the hydrogen bond between the acidic NH group of the CpA ligand and the carbonyl group of NBS.  相似文献   
107.
First-in-class CuII and AuIII metaled phosphorus dendrons were synthesized and showed significant antiproliferative activity against several aggressive breast cancer cell lines. The data suggest that the cytotoxicity increases with reducing length of the alkyl chains, whereas the replacement of CuII with AuIII considerably increases the antiproliferative activity of metaled phosphorus dendrons. Very interestingly, we found that the cell death pathway is related to the nature of the metal complexed by the plain dendrons. CuII metaled dendrons showed a potent caspase-independent cell death pathway, whereas AuIII metaled dendrons displayed a caspase-dependent apoptotic pathway. The complexation of plain dendrons with AuIII increased the cellular lethality versus dendrons with CuII and promoted the translocation of Bax into the mitochondria and the release of Cytochrome C (Cyto C).  相似文献   
108.
As redox-active based supercapacitors are known as highly desirable next-generation supercapacitor electrodes, the targeted design of two ferrocene-functionalized (Fc(COOH)2) clusters based on coinage metals, [(PPh3)2AgO2CFcCO2Ag(PPh3)2]2 ⋅ 7 CH3OH (SC1: super capacitor) and [(PPh3)3CuO2CFcCO2Cu(PPh3)3] ⋅ 3 CH3OH (SC2), is reported. Both structures are fully characterized by various techniques. The structures are utilized as energy storage electrode materials, giving 130 F g−1 and 210 F g−1 specific capacitance at 1.5 A g−1 in Na2SO4 electrolyte, respectively. The obtained results show that the presence of CuI instead of AgI improves the supercapacitive performance of the cluster. Further, to improve the conductivity, the PSC2 ([(PPh3)2CuO2CFcCO2]), a polymeric structure of SC2, was synthesized and used as an energy storage electrode. PSC2 displays high conductivity and gives 455 F g−1 capacitance at 3 A g−1. The PSC2 as a supercapacitor electrode presents a high power density (2416 W kg−1), high energy density (161 Wh kg−1), and long cycle life over 4000 cycles (93 %). These results could lead to the amplification of high-performance supercapacitors in new areas to develop real applications and stimulate the use of the targeted design of coordination polymers without hybridization or compositions with additive materials.  相似文献   
109.
The construction of nano-scale hybrid materials with a smart interfacial structure, established by using rare earth oxides and carbon as building blocks, is essential for the development of economical and efficient catalysts for oxygen reduction reactions (ORRs). In this work, hexagonal La2O3 nanocrystals on a nitrogen-doped porous carbon (NPC) derived from crop radish, served as building bricks, are prepared by chemical precipitation and then calcination at elevated temperatures. The obtained La2O3/NPC hybrid exhibits a very high ORR activity with a half-wave potential of 0.90 V, exceeding that of commercial Pt/C (0.83 V). Both DFT theoretical and experimental results have verified that the significantly enhanced catalytic performance is ascribed to the formation of the C−O−La covalent bonds between carbon and La2O3. Through the covalent bonds, electrons can transfer from the carbon to La2O3 and occupy the unfilled eg orbital of the La2O3 phase. This results in the accelerated adsorption of active oxygen and the facilitated desorption of the surface hydroxides (OHad), thereby promoting the ORR over the catalyst.  相似文献   
110.
Although lipids contribute to cancer drug resistance, it is challenging to target diverse range of lipids. Here, we show enzymatically inserting exceedingly simple synthetic lipids into membranes for increasing membrane tension and selectively inhibiting drug resistant cancer cells. The lipid, formed by conjugating dodecylamine to d -phosphotyrosine, self-assembles to form micelles. Enzymatic dephosphorylation of the micelles inserts the lipids into membranes and increases membrane tension. The micelles effectively inhibit a drug resistant glioblastoma cell (T98G) or a triple-negative breast cancer cell (HCC1937), without inducing acquired drug resistance. Moreover, the enzymatic reaction of the micelles promotes the accumulation of the lipids in the membranes of subcellular organelles (e.g., endoplasmic reticulum (ER), Golgi, and mitochondria), thus activating multiple regulated cell death pathways. This work, in which for the first time membrane tension is increased to inhibit cancer cells, illustrates a new and powerful supramolecular approach for antagonizing difficult drug targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号